
Abstract – LLMs have been shown to use
tools well. By allowing specific tools to in-
crease the capabilities that LLMs struggle
with, these models can become much more
useful. Previous works use handcrafted ex-
amples of simple tool use during self-training.
This type of data generation and training is a
great compliment to the self-supervised na-
ture of LLMs because most of the generation
effort is placed on the LLM. But as the tools
become more complex it will become harder
to handwrite thorough examples that allow
this generation. Today we introduce Source-
former, which attempts to use a tool in the
form of raw source code for self-training and
benchmarking during evaluation. We propose
a potentially viable method that allows tools
to easily grow in complexity and size as the
input token sequence to our LLMs inevitably
grows. We focus on one tool in particular, a
calculator, as a proof of concept for this idea;
although, our results are sub par. Across
three math benchmarks SVAMP, MAWPS,
and ASDiv our model accuracy increases
slightly, for some versions, compared to our
base model before finetuning. Our code is
available here https://github.com/erich-
mond33/sourceformer

1 Introduction
Large language models (LLMs) like GPT-3 [Brown
et al. 2020] have many emergent capabilities that
make them very useful in a wide variety of situa-
tions. For the first time in history our computers
are beginning to understand human language, or
at least mimic understanding extremely well. A
very interesting next step is using this under-
standing to interface and control tools in ways
that increase human efficiency and creativity. And
it is this large overarching idea that motivates us
to pursue smaller steps forward within the world
of tool use.

In this paper, we focus on one tool, a calculator.
In previous work, Toolformer [Schick et al. 2023]

was shown to take advantage of calculators, and
other tools, by using the self-training process.
This process takes handwritten examples of these
API tools, and generates a training dataset based
on this guidance. However, as we try to use more
complex tools, it will become much more strenu-
ous to create thorough handwritten examples for
complex tools that can do many different things.
Today we introduce Sourceformer, which
learns to use a calculator by understand-
ing the tool in the form of raw source
code. This technique provides a potential-
ly viable method that allows tools to easi-
ly grow in complexity and size. Based on the
performance of Toolformer's use on other tools
and the similarity of our model to theirs, we be-
lieve this approach could work well with many
other tools beyond the calculator despite our re-
sults. Another important aspect of our work is by
using source code, we are leaning into the future
of transformer models based on two assumptions.

#1 The input sequence of transformers will
get much larger

Today we can only squeeze modest amounts of
code into the input sequence of modern trans-
formers. It feels like the early days of digital
memory when we had kilobytes worth of storage
to work with. But in the future we can imagine
having a much larger input sequence. This in-
crease in length could potentially store entire apps
or websites worth of source code providing a
modern day AI assistant that can interface and
control our computers.

#2 Future data will be collected in real
time

Our hunger for data is always increasing. Eventu-
ally our need will cap out at what is being pro-
duced in real time. Sensors and computer logs will
collect everything that is happening in the
present. A key source of data will be the interac-
tions between users and computers. This self-su-
pervised app/website data will be a great source of
training data for larger versions of what we are

Sourceformer: Tool Integration into Transformer
Large Language Models Through Source Code

Eli Richmond
https://bloge.li

Nic Herndon
herndonn19@ecu.edu

https://github.com/erichmond33/sourceformer
https://github.com/erichmond33/sourceformer
https://github.com/erichmond33/sourceformer
https://bloge.li
mailto:herndonn19@ecu.edu

proposing here because these interactions are
with the raw source code that these apps and web-
sites are built with.

2 Approach
We take the self-training [Schick et al. 2023; He et
al. 2020] approach and generate our entire
dataset. The idea is to augment a textual dataset
by allowing a pre-trained transformer LLM to in-
sert calculator function calls into places where the
information is helpful later in the text. With this
augmented dataset, we then finetune the same
model with the augmented dataset that it generat-
ed. Thus, the model self-trains itself to use a tool,
the calculator. An example of a single generated
sample is shown in figure 1.

In this example, we can see that the beginning of
the function call is denoted with " [" and the end
is denoted with a "] ". We call these <start_-
tool_use> and <stop_tool_use> tokens in this
paper; although, to avoid adding two new tokens
to the model's vocabulary, in our code we use
" [" and "] " to represent these. In our calcula-
tor source code we only include add, subtract,
multiply, and divide as available functions to call.
Any number of function calls can happen in-be-
tween the <start_tool_use> and <stop_-
tool_use> tokens including nested function calls.

2.1 Defining the data and model

Our dataset C is the c4 - colossal, cleaned version
of common crawl - dataset [Raffel et al. 2020]
which includes a large amount of text data. From
this point forward, a Sentence, with a capital 'S',
indicates a single example of text data from our
dataset rather than a single English sentence such

as the one being read right now. Given C, through
the data generation process, only an augmented
subset of the dataset will be kept. We denote this
augmented data-subset as C*. We use GPT-Neo
1.3 billion parameters [Black et al. 2021] as our
large language model, M, that will be used to gen-
erate and finetune on C*. 1

2.2 Preprocessing

Before evaluating a Sentence any further, we put it
through some heuristics to help speed up quality
data generation. Only one of the three heuristics
must be met, otherwise we skip to the next Sen-
tence in C.

(i) contain at least three numbers within a win-
dow of 100 tokens, where one of these numbers is
the result of applying a mathematical operation
to the other two.

No explicit operators (+,-,*,/) have to be included
in the text, and we try every possible combination
of all the numbers found within the 100 token
window to satisfy this constraint.

(ii) contain one of the sequences “=”, “equals”,
“equal to”, “total of”, “average of” followed by a
number.

(iii) contain at least three numbers; for texts that
only match the last criterion, we only keep a
random subset of 1%.

To account for a maximum input token sequence
of 1024 in M, we break each Sentence up into 128
token sequences before proceeding with the fol-
lowing steps. Let these 128 token Sentence chunks
be denoted as Sentence-128.

2.3 Sentence position filtration

With our model M, at every position i within Sen-
tence-128, we calculate the probability of each
predicted token . This means each z
is a vector with some non-negative prediction be-
tween 0 and 1 for the <tool_use_start> token, as
well as every other token in our model's vocabu-
lary. We filter z by taking the top k positions
based on the predicted probability of the
<tool_use_start> token where k=20. See figure
2 for a visual representation of this process.

There are 2000 students and only 120 teachers,
resulting in a [divide(2000, 120) -> 16.67] 16.67
student to teacher ratio.

Figure 1: An ideal generated data example. The in-
serted function call is highlighted.

z = z1, . . . , zn

 We actually use GPT-J 6B for data generation as well. We had originally planned to train on GPT-J; however, we 1
could not find the computational resources for this. This is discussed in more depth in section 3.1 Data generation.

2.4 Generation

For each z after top k filtration, we are left with 20
positions where the next token prediction for
<tool_use_start> is the most probable. Let

 be a slice of Sentence-128 from the
start, up to position z. With our model M we put
some instructions, the source code, some exam-
ples, x, and <tool_use_start> as an input token
prompt before doing generation. We include our
entire input prompt in Appendix A.

We generate m continuations for each z where m
= 10. The <stop_tool_use> token is treated as an
end of sequence token, otherwise generation is
stopped after a maximum of 28 new tokens have
been generated.

2.5 Calling the functions

First we check for the <stop_tool_use> token.
Then we check to ensure that either the strings
add, subtract, multiply, or divide are found in
between the start and stop tokens. If found, we
execute the generated function call (or nested
function calls) as Python code. We format the
e n t i r e f u n c t i o n c a l l a n d r e s p o n s e a s
"[functionName(num1, num2) -> response]"
and a function call with no response as
"[functionName(num1, num2)]".

2.6 Loss threshold filtration

Let f->r represent the function call and response
and f represent just the function call with no re-
sponse. We start by creating three different ver-
sions of Sentence-128.

f->r + Sentence-128 (version 1): Here we pre-
fix Sentence-128 with f->r.

f + Sentence-128 (version 2): Here we prefix
Sentence-128 with f.

Sentence-128 (version 3): This is the normal
Sentence-128 with no changes.

Let each version be represented as v1, v2, v3. Note
that because our model doesn't know how to use
these function calls yet, we prefix them instead of
inserting them in the position they were generated
at.

Let i be the position of the function call that was
generated in section 2.3 Sentence position filtra-
t ion. Let be a vers ion of
Sentence-128, in our case either v1, v2, v3. Also,
let w be a sequence of weights where

. Using weighted cross
entropy loss

we calculate the loss for all three variations v1, v2,
v3 of our Sentence-128.

Next, given a filter threshold we only
keep examples where

x = x1, . . . , xn

x = x1, . . . , xn

wt = max(0,1 − 0.2 ⋅ t)

Li(z) = − ∑n
j=i (

wj−i

∑n
k=i wk−i

) ⋅ log pM (xj ∣ z, x1:j−1)

Tf = 0.3

min (Li(v2), Li(v3)) − Li(v1) ≥ Tf

Sentence There are 2000 students ... a 16.67 student to teacher ratio.

Probability 0.01 0.2 0.02 0.04 ... 0.3 0.01 0.00 0.03 0.02 0.1

Index 0 1 2 3 ... 10 11 12 13 14 15

Figure 2: This is a visual representation of sentence position filtration. We start with a single training Sentence. At
each index we calculate the predicted probability for the <tool_use_start> token.* For this example only, let k = 2.
We then grab the index of the top k probabilities. Here those is indexes are 1 and 10.

* Note these values are only for demonstration.

the loss of v1 is at least smaller than the mini-
mum of v2 or v3. In other words, the function 2

call and response must reduce the loss by else it
will be cut from our final training dataset.

3 Results
In order to determine how well our fine-tuned
model uses the calculator, we evaluate it zero-shot
on question and answer math benchmarks includ-
ing SVAMP, MAWPS, and ASDiv [Patel, Bhat-
tamishra, and Goyal 2021; Koncel-Kedziorski et
al. 2016; Miao, C.-C. Liang, and Su 2020]. Figure
3 shows an example of an SVAMP sample.

3.1 Data generation

We use 1 Nvidia A100 32gb, 1 Nvidia Tesla t4
24gb, and 1 Nvidia t4 16gb to generate data using
the methods we described in section 2 Approach.
On the A100, we generate data with GPT-J 6 bil-
lion parameters [B. Wang and Komatsuzaki
2021]; however, we only use GPT-Neo 1.3 billion
parameters on the latter two GPUs. Originally we
had planned to train and evaluate using GPT-J
6B; however, due to compute constraints, we had
to scale back to GPT-Neo 1.3B.

Using a filter threshold of 0.3, our generated
dataset C* includes 3697 calculator function calls
across 1577 training examples. 33% of our dataset
comes from GPT-J while the rest comes from
GPT-Neo.

3.2 Training

For finetuning we use floating point 16, a batch
size of 8, a learning rate of 1 * 10^-5 with linear
warmup the first 10% of training. Our hardware
includes 1 Nvidia A100 32gb and 1 Nvidia Tesla t4
24gb. Our results are based on training for 30
epochs; however, they are almost the same when
using any lower number of epochs. We train using
Deepspeed ZeRO-3.

3.3 Models & testing input
prompts

During testing we check the performance of two
models and three different zero shot input prompt
variations.

GPT-Neo: Nothing special here, just vanilla
GPT-Neo. Our zero shot testing prompt for this
model is a question from one of our math bench-
marks with the text " The answer is" added to the
end.

Sourceformer: This is GPT-Neo finetuned on
our calculator dataset. If the <stop_tool_use>
token is generated, we pause generation, execute
the function call, then resume generation. Our
zero shot setup is the same as GPT-Neo above.

Sourceformer (source-code on): This is
GPT-Neo finetuned on our calculator dataset.
Here any function calls will be executed and thus
have a response. "source-code on" means the four
source code functions add, subtract, multiply, and
divide will be included at the front of the zero shot
testing prompt used by GPT-Neo above.

Sourceformer (cheats on): This is GPT-Neo
finetuned on our calculator dataset. However, at
the end of our zero shot testing prompt we add
the <start_tool_use> token to force the model
into using the calculator tool. Other than this ad-
dition, the zero shot prompt is the same as GPT-
Neo above.

Examples of the zero shot testing input prompts
can be found in Appendix B.

3.4 Benchmarks

We evaluate our performance on the SVAMP, AS-
Div, and MAWPS datasets. The correct answers

Tf

Tf

Julia played tag with 18 kids on Monday. She
played tag with 10 kids on Tuesday. How many
more kids did she play with on Monday than on
Tuesday?

Answer: 8

Figure 3: A single example from the SVAMP dataset.
Both MAWPS and ASDiv questions use a similar
question and answer format.

Tf

 The sequence of weights will always be where the first element, 1/3, 2

is at the function call position i.
w = [1/3, .8/3, .6/3, .4/3, .2 /3, 0, . . . , 0, n]

for these are always a single number, so to deter-
mine whether the answer generated by our model
is correct or not, we check the first number gener-
ated by the model. However, if the model's output
contains a "=" we count that question as wrong.
Originally we planned on flagging these and man-
ually checking if an equation such as "The answer
is 5+5=10" existed, thus checking the number af-
ter the equals sign. The number of questions
where an equal sign was generated is on average
around 50 per benchmark, and the number of
correct answers within those 50 are miniscule.

Table 1 shows our results. And as we can see,
Sourceformer performs almost identically to the
base GPT-Neo thus it didn't learn how and when
to use the tool as well as we would have liked.
There are 1% fluctuations across a few different
models, but these are negligible; our model per-
forms roughly the same as base GPT-Neo.

Across all benchmarks our Sourceformer model
calls a calculator function 6.1% of the time,
Sourceformer source-code on calls the tool
4.8% of the time, and lastly when we strongly sug-
gest the model to call a function with Source-
former cheats on, it calls a function 98% of the
time. Clearly, our model has no idea how or when
to use this tool as the accuracy does not move sig-
nificantly in any case.

We are not entirely sure why Toolformer was able
to get such good results, and we were not. Perhaps
our implementation has an error somewhere, we
didn't have enough data, we didn't have high
enough quality data, we should have trained on
more than one tool in order for our model to gain
a general understanding of how to use tools, or
some combination of these potential problems.

4 Related works
This paper is largely based on Toolformer [Schick
et al. 2023]. We are very thankful for their team's
great work.

4.1 Tools in the form of APIs:

The most related paper overall is of course Tool-
former. Here their most important contribution is
the loss filtering method which we use in our pa-
per as well. They also test their methods on many
tools including the calculator whereas we only
focus on the one. The key distinction between
Toolformer's calculator implementation and our's
is we teach our model to use raw source code vs a
calculator API. Their methods yield x results,

which are better/worse than ours. Our aim was to,
at minimum, match Toolformer's performance on
these math benchmarks, thus showing that raw
source code is a viable path going into the future.

Quite a few papers use APIs as tools in some form
or another. Here an API is used as a search tool
for code generation [Zhang et al. 2023]. These
take the approach of having access to many differ-
ent tools in the form of APIs with particular work-
flows and processes to pick and use the correct
one [Y. Liang et al. 2023], [Li et al. 2023]. For
biomedical information, web APIs can be used to
help query databases to gain more precise special-
ized knowledge [Jin et al. 2023].

4.2 Tools in the form of generat-
ed code:

PAL [Gao et al. 2023] is a model that uses chain of
thought to break down a question and then gener-
ates Python code as a tool in between each
thought to solve the problem. We focus on having
the model use the source code tools we provide it,
while PAL generates everything on its own. Simi-
larly, ART [Paranjape et al. 2023] use Codex [M.
Chen et al. 2021] to generate tools on the fly as
well.

PAL and ART achieve 79.4 & 76.2 on SVAMP, and
PAL achieves 79.6 on ASDiv.

4.3 Avoiding labeling:

Finding ways to avoid labeling data is very excit-
ing and nice compliment to the self-supervised
nature of transformers. In our paper, we try to
copy Toolformer's self-training process as closely
as possible. Similar to this, [Y. Wang et al. 2023]

Model SVAMP MAWPS ASDiv

GPT-Neo 2.2 1.5 1.6

Sourceformer 1.5 1.7 1.2

Sourceformer
 source-code on 3.0 2.1 1.8

Sourceformer
 cheats on 2.5 2.1 1.4

Table 1: The accuracy percentage from testing differ-
ent versions of our model on the SVAMP, MAWPS,
and ASDiv benchmarks.

uses textual query generation to self-train a model
for document retrieval. We can also see the use-
fulness of self-training being adopted in other ar-
eas. For pre-trained image processing[H. Chen et
al. 2021], they don't generate data, but they do
create corrupted image pairs which also do not
require any kind of labeling. DALLE2 [Ramesh et
al. 2022], which uses diffusion, works in a similar
way. Diffusion models learn to generate data by
reversing a gradual noising process.

4.4 Transformer LLMs:

Another fundamental proponent in this paper is
the transformer LLM. The model used in this pa-
per, GPT-Neo is a smaller open source version of
GPT-3 [Brown et al. 2020]. And a key proponent
of transformer LLMs is the attention mechanism
[Vaswani et al. 2017].

5 Conclusion
In this paper we introduce Sourceformer, a novel
approach to teaching a transformer LLM how and
when to use a calculator. Our method attempts to
teach GPT-Neo how to use this tool in the form of
raw source code in order to show that this is a vi-
able path forward for larger and more complex
tools. We use self-training to generate our dataset,
which is then used to finetune our pre-trained
transformer LLM. Experiments on the SVAMP,
MAWPS, and ASDiv datasets show our model per-
forms similarly to our base model before finetun-
ing. These results indicate that our methods either
have a large flaw or simply don't work; however,
given Toolformer's success, we assume the for-
mer.

References
Black, Sid et al. (Mar. 2021). GPT-Neo: Large

Scale Autoregressive Language Modeling with
Mesh-Tensorflow. Version 1.0. doi: 10.5281/
zenodo.5297715. url: https://doi.org/10.5281/
zenodo.5297715.

Brown, Tom B. et al. (2020). Language Models
are Few-Shot Learners. arXiv: 2005.14165
[cs.CL].

Chen, Hanting et al. (2021). Pre-Trained Image
Processing Transformer. arXiv: 2012.00364
[cs.CV].

Chen, Mark et al. (2021). Evaluating Large Lan-
guage Models Trained on Code. arXiv:
2107.03374 [cs.LG].

Gao, Luyu et al. (2023). PAL: Program-aided
Language Models. arXiv: 2211.10435 [cs.CL].

He, Junxian et al. (2020). “Revisiting Self-Train-
ing for Neural Sequence Generation”. In: In-
ternational Conference on Learning Repre-
sentations. url: https://openreview.net/fo-
rum?id=SJgdnAVKDH.

Jin, Qiao et al. (2023). GeneGPT: Augmenting
Large Language Models with Domain Tools
for Improved Access to Biomedical Informa-
tion. arXiv: 2304.09667 [cs.CL].

Koncel-Kedziorski, Rik et al. (June 2016). “MAW-
PS: A Math Word Problem Repository”. In:
Proceedings of the 2016 Conference of the
North American Chapter of the Association
for Computational Linguistics: Human Lan-
guage Technologies. San Diego, California:
Association for Computational Linguistics,
pp. 1152–1157. doi: 10.18653/v1/N16-1136.
url: https://aclanthology.org/N16-1136.

Li, Minghao et al. (2023). API-Bank: A Bench-
mark for Tool-Augmented LLMs. arXiv:
2304.08244 [cs.CL].

Liang, Yaobo et al. (2023). TaskMatrix.AI: Com-
pleting Tasks by Connecting Foundation
Models with Millions of APIs. arXiv:
2303.16434 [cs.AI].

Miao, Shen-yun, Chao-Chun Liang, and Keh-Yih
Su (July 2020). “A Diverse Corpus for Evalu-
ating and Developing English Math Word
Problem Solvers”. In: Proceedings of the 58th
Annual Meeting of the Association for Com-
putational Linguistics. Online: Association for
Computational Linguistics, pp. 975–984. doi:
10.18653/v1/2020.acl-main.92. url: https://
aclanthology.org/2020.acl-main.92.

Paranjape, Bhargavi et al. (2023). ART: Automat-
ic multi-step reasoning and tool-use for large
language models. arXiv: 2303.09014 [cs.CL].

Patel, Arkil, Satwik Bhattamishra, and Navin
Goyal (June 2021). “Are NLP Models really
able to Solve Simple Math Word Problems?”
In: Proceedings of the 2021 Conference of the
North American Chapter of the Association
for Computational Linguistics: Human Lan-
guage Technologies. Online: Association for
Computational Linguistics, pp. 2080–2094.

doi: 10.18653/v1/2021.naacl-main.168. url:
ht tps://aclanthology.org/2021.naacl-
main.168.

Raffel, Colin et al. (2020). Exploring the Limits of
Transfer Learning with a Unified Text-to-Text
Transformer. arXiv: 1910.10683 [cs.LG].

Ramesh, Aditya et al. (2022). Hierarchical Text-
Conditional Image Generation with CLIP La-
tents. arXiv: 2204.06125 [cs.CV].

Schick, Timo et al. (2023). “Toolformer: Language
models can teach themselves to use tools”. In:
arXiv preprint arXiv:2302.04761.

Vaswani, Ashish et al. (2017). Attention Is All You
Need. arXiv: 1706.03762 [cs.CL].

Wang, Ben and Aran Komatsuzaki (May 2021).
GPT-J-6B: A 6 Billion Parameter Autoregres-
sive Language Model. https://github.com/
kingoflolz/mesh-transformer-jax.

Wang, Yujing et al. (2023). A Neural Corpus In-
dexer for Document Retrieval. arXiv:
2206.02743 [cs.IR].

Zhang, Kechi et al. (2023). ToolCoder: Teach
Code Generation Models to use API search
tools. arXiv: 2305.04032 [cs.SE].

Appendix A

Your task is to add calculator function calls to a piece of text. The calls should help you get in-
formation required to complete the text. You can call a function by writing "[functionName(num1,
num2)]". Here are the available calculator functions:

def add(num1, num2):
 return num1 + num2

def subtract(num1, num2):
 return num1 - num2

def divide(num1, num2):
 if num2 == 0:
 raise ValueError("Cannot divide by zero.")
 return num1 / num2

def multiply(num1, num2):
 return num1 * num2

Here are some examples of calculator function calls:
Input: The number in the next term is 18 + 12 x 3 = 54.
Output: The number in the next term is 18 + 12 x 3 = [add(18, multiply(12, 3))] 54.
Input: The population is 658,893 people. This is 11.4% of the national average of 5,763,868
people.
Output: The population is 658,893 people. This is 11.4% of the national average of
[divide(658,893, 11.4%)] 5,763,868 people.
Input: A total of 252 qualifying matches were played, and 723 goals were scored (an average of
2.87 per match). This is three times less than the 2169 goals last year.
Output: A total of 252 qualifying matches were played, and 723 goals were scored (an average
of [divide(723, 252)] 2.87 per match). This is twenty goals more than the [subtract(723, 20)] 703
goals last year.
Input: I went to Paris in 1994 and stayed there until 2011, so in total, it was 17 years.
Output: I went to Paris in 1994 and stayed there until 2011, so in total, it was [subtract(2011,
1994)] 17 years.
Input: From this, we have 4 * 30 minutes = 120 minutes.
Output: From this, we have 4 * 30 minutes = [multiply(4, 30)] 120 minutes.

Input: x
Output: There are 2000 students and only 120 teachers, resulting in a [** Model Generated
Text **

Figure 4: This is the input prompt we use to generate our data. We append the entire Sentence up to the top k posi-
tion. Then our model generates an example - hopefully a proper function call of course. Notice we prod the model
to do a function call by adding the function start token " [". We repeat this step 20 times before taking the example
with the best loss defined in section 2.6 Loss threshold filtration.

Appendix B

GPT-Neo & Sourceformer:

Julia played tag with 18 kids on Monday. She played tag with 10 kids on Tuesday. How many more kids
did she play with on Monday than on Tuesday? The answer is

Sourceformer (source-code on):

def add(num1, num2):
 return num1 + num2

def subtract(num1, num2):
 return num1 - num2

def divide(num1, num2):
 if num2 == 0:
 raise ValueError("Cannot divide by zero.")
 return num1 / num2

def multiply(num1, num2):
 return num1 * num2

Julia played tag with 18 kids on Monday. She played tag with 10 kids on Tuesday. How many more kids
did she play with on Monday than on Tuesday? The answer is

Sourceformer (cheats on):

Julia played tag with 18 kids on Monday. She played tag with 10 kids on Tuesday. How many more kids
did she play with on Monday than on Tuesday? The answer is [

Figure 5: These are the zero shot input prompts we use for each model at test time. Here the sentence "Julia played
tag..." is an example from the SVAMP benchmark meant to be replaced by whatever question we are currently eval-
uating. The text highlighted in red are the additions that classify the versions as either source-code on or cheats
on.

	2.1 Defining the data and model
	2.2 Preprocessing
	2.3 Sentence position filtration
	2.4 Generation
	2.5 Calling the functions
	2.6 Loss threshold filtration
	3.1 Data generation
	3.2 Training
	3.3 Models & testing input prompts
	3.4 Benchmarks
	4.1 Tools in the form of APIs:
	4.2 Tools in the form of generated code:
	4.3 Avoiding labeling:
	4.4 Transformer LLMs:

